Dinámica de citas en patentes de IA y educación
Hacia un nuevo tipo de conocimiento universitario
Palabras clave:
Inteligencia artificial, Educación superior, Innovación, Propiedad intelectualResumen
La inteligencia artificial está revolucionando los fundamentos de la generación y validación del conocimiento en la educación superior. Este trabajo utiliza 1199 familias de patentes y 4493 citas académicas entre 2012 y 2024 para investigar la estructura de la innovación desde la perspectiva de la destrucción creativa y conceptualizando la IA como una invención de un método de invención. Los hallazgos muestran que la relación entre la educación y la IA está experimentando una fase de rápido crecimiento, marcada por importantes disparidades regionales: la escasa participación de América Latina contrasta con la hegemonía estadounidense. Se muestra una reconfiguración estructural en la topología del conocimiento mediante el análisis de redes: los sistemas eléctricos de enseñanza y el aprendizaje automático han relegado los enfoques pedagógicos tradicionales a la periferia y se han convertido en los puentes necesarios para la innovación.
Citas
Aghion, P., Antonin, C., & Bunel, S. (2021). The power of creative destruction: Economic upheaval and the wealth of nations. Harvard University Press. https://doi.org/10.4159/9780674258686
Agrawal, A., Gans, J., & Goldfarb, A. (2017). What to expect from artificial inte- lligence. mit Sloan Management Review. https://agrawal.ca/s/What-to-Expect-From-Artificial-Intelligence-b88l.pdf
Bianchini, S., Müller, M., & Pelletier, P. (2022). Artificial intelligence in science: An emerging general method of invention. Research Policy, 51(10), Article 104604. https://doi.org/10.1016/j.respol.2022.104604
Borgstedt, P., Neyer, B., & Schewe, G. (2017). Paving the road to electric vehicles – A patent analysis of the automotive supply industry. Journal of Cleaner Production, 167, 75-87. https://doi.org/10.1016/j.jclepro.2017.08.161
Braesemann, F. (2019). The Evolution of Digital Technologies: A Network Perspec- tive on Machine Learning. ssrn Electronic Journal. https://doi.org/10.2139/ssrn.3470345
Braun, F. G., Hooper, E., Wand, R., & Zloczysti, P. (2011). Holding a candle to innovation in concentrating solar power technologies: A study drawing on patent data. Energy Policy, 39(5), 2441–2456. https://doi.org/10.1016/j.enpol.2011.02.008
Cooperative Patent Classification (cpc) | EPO.org. (s. f.). https://www.epo.org/en/searching-for-patents/helpful-resources/first-time-here/classification/cpc
Chaka, C. (2023). Fourth industrial revolution—a review of applications, prospects, and challenges for artificial intelligence, robotics and blockchain in higher education. Research and Practice in Technology Enhanced Learning, 18, 002. https://doi.org/10.58459/rptel.2023.18002
Chandra, R. (2024). Joseph Schumpeter, Allyn Young, and the future of capitalism. Journal of Post Keynesian Economics, 47(4), 823–852. https://doi.org/10.1080/ 01603477.2024.2395384
Chen, A., Xiang, M., Zhou, J., Jia, J., Shang, J., Li, X., Gašević, D., & Fan, Y. (2025). Unpacking help-seeking process through multimodal learning analytics: A comparative study of ChatGPT vs Human expert. Computers & Education, 226, 105198. https://doi.org/10.1016/j.compedu.2024.105198
Clark, B. R. (1998). Creating entrepreneurial universities: Organizational pathways of transformation. Pergamon. https://eric.ed.gov/?id=ED421938
Cockburn, I. M., Henderson, R., & Stern, S. (2018). The impact of artificial intelli- gence on innovation (nber Working Paper No. 24449). National Bureau of Economic Research. http://www.nber.org/papers/w24449
Crompton, H., & Burke, D. (2023). Artificial intelligence in higher education: The state of the field. International Journal of Educational Technology in Higher Education, 20, 22. https://doi.org/10.1186/s41239-023-00392-8
Devasena, R. (2024). Artificial intelligence in education: An alternative to tradi- tional learning. Journal of English Language Teaching, 66(1), 13–21. https://journals.eltai.in/jelt/article/view/JELT660103
Du Plooy, E., Casteleijn, D., & Franzsen, D. (2024). Personalized adaptive learning in higher education: A scoping review of key characteristics and impact on academic performance and engagement. Heliyon, 10(21), e39630. https:// doi.org/10.1016/j.heliyon.2024.e39630
Espacenet. (s. f.). CPC Browser. European Patent Organization Oficina Europea de Patentes. https://worldwide.espacenet.com/patent/cpc-browser#
Etzkowitz, H. (1983). Entrepreneurial scientists and entrepreneurial universities in American academic science. Minerva, 21(2–3), 198–233. https://www.jstor.org/stable/41820527
Etzkowitz, H. (2003). Research groups as ‘quasi-firms’: The invention of the entrepreneurial university. Research Policy, 32(1), 109–121. https://doi.org/10. 1016/S0048-7333(02)00009-4
Feng, S., & Law, N. (2021). Mapping Artificial Intelligence in Education Research: a Network‐based Keyword Analysis. International Journal of Artificial Intelligence in Education, 31(2), 277–303. https://doi.org/10.1007/s40593-021-00244-4
Ferreyra, M. M., Avitabile, C., Botero Álvarez, J., Haimovich Paz, F., & Urzúa, S. (2017). At a crossroads: Higher education in Latin America and the Caribbean. World Bank. https://doi.org/10.1596/978-1-4648-1014-5
Gerlich, M. (2025). ai tools in society: Impacts on cognitive offloading and the future of critical thinking. Societies, 15(1), 6. https://doi.org/10.3390/soc15010006
Griliches, Z. (1998). Patent statistics as economic indicators: a survey. En R&D and productivity: the econometric evidence (pp. 287-343). University of Chicago Press. http://www.nber.org/chapters/c8351
Hakiki, M., Fadli, R., Samala, A. D., Fricticarani, A., Dayurni, P., Rahmadani, K., Astiti, A. D., & Sabir, A. (2023). Exploring the impact of using Chat-GPT
on student learning outcomes in technology learning: The comprehen- sive experiment. Advances in Mobile Learning Educational Research, 3(2), 859–872. https://doi.org/10.25082/AMLER.2023.02.013
Hetmańczyk, P. (2024). Digitalization and its impact on labour market and educa- tion: Selected aspects. Education and Information Technologies, 29, 11119–11134. https://doi.org/10.1007/s10639-023-12203-8
Hicks, B., Linden, K., & Van Der Ploeg, N. (2021). Opportunities to improve lear- ning analytics for student support when using online assessment tools. En S. Gregory, S. Warburton, and M. Schier (Eds.), 2021: ASCILITE 2021 Confe- rence Proceedings: Back to the Future (pp. 60-64). University of New England. https://publications.ascilite.org/index.php/APUB/article/view/353/328
Yusof, M., y Jain, K. (2007). Entrepreneurial Leadership and Academic Entrepre- neurship in Malaysian Public Research Universities. DHARANA - Bhavan’s International Journal of Business, 5(2), 87–100. https://informaticsjournals. co.in/index.php/dbijb/article/download/18218/15252
Johnson, R. B. (2014). Creative destruction of higher education institutions. Journal of Research Initiatives, 1(2), Article 12. https://digitalcommons.uncfsu.edu/jri/vol1/iss2/12
Kestin, G., Miller, K., Klales, A., Milbourne T., & Ponti G. (2025). ai tutoring outperforms in-class active learning: An rct introducing a novel research- based design in an authentic educational setting. Scientific Reports, 15, 17458. https://doi.org/10.1038/s41598-025-97652-6
Kotlarz, P., Febo, M., & Nino, J. C. (2024). Brain network modularity and resilience signaled by betweenness centrality percolation spiking. Applied Sciences, 14(10), 4197. https://doi.org/10.3390/app14104197
Kogelmann, B. (2025). Creative destruction and the autonomous life. Journal of Business Ethics, 197, 659–671. https://doi.org/10.1007/s10551-024-05721-z
Lee, S., Hwang, J., & Cho, E. (2021). Comparing technology convergence of artifi- cial intelligence on the industrial sectors: two-way approaches on network analysis and clustering analysis. Scientometrics, 127(1), 407-452. https://doi. org/10.1007/s11192-021-04170-z
Leja, K., y Nagucka, E. (2013). Creative destruction of the university. Working Paper Series A, 14. Faculty of Management and Economics, Gdańsk University of Technology. https://open.icm.edu.pl/items/f6a7741e-550a-4028-bbec-91b728fd9eb9
Liao, Z., Hong, W., Wang, Y., & Zhang, X. (2024). Does the patent value of green technology affect its transfer? The moderating role of industry competi- tion. Environmental Research, 241, 117620. https://doi.org/10.1016/j.envres.2023.117620
Lv, Z., Shen, H., & Saravanan, V. (2020). Artificial intelligence with fuzzy logic system for learning management evaluation in higher educational systems. Journal of Intelligent & Fuzzy Systems, 40(2), 3501–3511. https://doi. org/10.3233/JIFS-189387
Mars, M. M., & Rhoades, G. (2012). Socially Oriented Student Entrepreneurship: A Study of Student Change Agency in the Academic Capitalism context. The Journal of Higher Education, 83(3), 435–459. https://doi.org/10.1080/0022 1546.2012.11777251
Molina, E., & Medina, E. (2025). ai revolution in higher education: What you need to know. En Digital innovations in education. World Bank. https://documents.worldbank.org/pt/publication/documents-reports/document- detail/099757104152527995
Mollick, E. R., & Mollick, L. (2023). Using ai to implement effective teaching strate- gies in classrooms: Five strategies, including prompts. The Wharton School Research Paper. https://doi.org/10.2139/ssrn.4391243
Montecchi, T., Russo, D., & Liu, Y. (2013). Searching in Cooperative Patent Classifi- cation: Comparison between keyword and concept-based search. Advanced Engineering Informatics, 27(3), 335–345. https://doi.org/10.1016/j. aei.2013.02.002
Mostafa, F., & Jollivet-Courtois, P. (2024). Does the future of Industry 4.0 lie in betweenness centrality? A structural network analysis of The Republic of Korea’s patent citation maps for the green industry. Revue D Économie Industrielle, 185, 105–133. https://doi.org/10.4000/12k1x
Mukkamala, S., Yendrapalli, K., Basnet, R. B., & Sung, A. H. (2007). Detecting coordinated distributed multiple attacks. En 21st International Conference on Advanced Information Networking and Applications Workshops (AINAW’07) (pp. 557–562). ieee. https://doi.org/10.1109/AINAW.2007.149
Norbäck, P. J., & Persson, L. (2024). Why generative ai can make creative destruc- tion more creative but less destructive. Small Business Economics, 63, 349–377. https://doi.org/10.1007/s11187-023-00829-4
Okewu, E., Adewole, P., Misra, S., Maskeliunas, R., & Damasevicius, R. (2021). Artificial neural networks for educational data mining in higher education: A systematic literature review. Applied Artificial Intelligence, 35(13), 983–1021. https://doi.org/10.1080/08839514.2021.1922847
Pan, L., Haq, S. ul, Shi, X., & Nadeem, M. (2024). The impact of digital competence and personal innovativeness on the learning behavior of students: Exploring the moderating role of digitalization in higher education quality. SAGE Open, 14(3). https://doi.org/10.1177/21582440241265919
Qian, L., Cao, W., Chen, L. (2025). Influence of artificial intelligence on higher education reform and talent cultivation in the digital intelligence era. Scientific Reports, 15, 6047. https://doi.org/10.1038/s41598-025-89392-4
Saksupapchon, P. (2025). Artificial intelligence-enabled educational advancements: A patent analysis approach. Procedia of Multidisciplinary Research, 3(3), 57. https://so09.tci-thaijo.org/index.php/PMR/article/view/6190
Sayed, B. T. (2021). Application of expert systems or decision-making systems in the field of education. Information Technology in Industry, 9(1), 1396–1405. https://doi.org/10.17762/itii.v9i1.283
Schmookler, J. (1966). Patent statistics. En Invention and economic growth (pp. 18-56). Harvard University Press. https://doi.org/10.4159/harvard.9780674432833.c3
Schumpeter, J. A. (1943). Capitalism, socialism and democracy. Allen & Unwin. (Original publicado en 1942 por Harper and Brothers)
Staniulyte, J. (2021). Towards the entrepreneurial university: the principal-agent problem. Quality & Quantity, 56(5), 2971–2988. https://doi.org/10.1007/s11135-021-01246-z
Times Higher Education. (2024). World University Rankings 2024. Times Higher Education. https://www.timeshighereducation.com/world-university-rankings/2024/world-ranking
Trajtenberg, M. (2019). Artificial Intelligence as the next gpt: A Political-Economy Perspective. nber. http://www.nber.org/chapters/c14025
UK Government Office for Science. (2016). Artificial intelligence: Opportunities and implications for the future of decision making. https://www.gov.uk/government/publications/artificial-intelligence-an-overview-for-policy-makers
Wakkee, I., Van Der Sijde, P., Vaupell, C., & Ghuman, K. (2018). The university’s role in sustainable development: Activating entrepreneurial scholars as agents of change. Technological Forecasting and Social Change, 141, 195–205. https:// doi.org/10.1016/j.techfore.2018.10.013
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 Reencuentro. Análisis de problemas universitarios

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
